无穷级数

2022.06.29

常数项级数

概念与性质

正项级数

交错级数

image-20220627131044686

任意项级数

绝对收敛与条件收敛

常用结论

  1. n=1unn=1|un|eg.n=1(1)n1nn=11n
  2. n=1unn=1un2{,un0,uneg.n=1(1)n1nn=11n
  3. n=1unn=1unun+1{,un0,(1),un,(2)prove(1).unun+112(un2+un+12)eg(2).n=1(1)n1nn=11n(n+1)
  4. n=1unn=1(1)nuneg.n=1(1)n1nn=11n
  5. n=1unn=1(1)nunneg.n=1(1)n1lnnn=21nlnn
  6. n=1unn=1u2nn=1u2n+1{,un0,uneg.n=1(1)n1nn=112n
  7. n=1unn=1(u2n+u2n1)n=1(u2n+u2n1),n=1un,limnun=0eg.u2n=1,u2n1=1,n=1(u2n+u2n1)=0,n=1un
  8. n=1un,n=1(u2nu2n1)eg.n=1(1)n1nn=1(u2nu2n1)=n=11n
  9. n=1un{n=1(un+un+1),n=1un+n=1un+1n=1(unun+1),n=1unn=1un+1
  10. n=1|un|,n=1unn=1un,n=1|un|
  11. n=1un2,n=1unn|unn|12(un2+1n2)
  12. a,b,c0aun+bvn+cwn=0n=1un,n=1vn,n=1wn
  13. n=1un,n=1vnn=1un±vn
  14. n=1un,n=1vnn=1un±vn
  15. n=1un,n=1vnn=1un+vn(un0,vn0)n=1un,n=1vnn=1un±vn(un,vn)
  16. n=1un,n=1vn{(1)n=1unvn,un0,vn0(2)n=1|un|vn,un,vn0(3)n=1unvn,un,vnprove(1):(unvnun2+vn22)

幂级数

幂级数与收敛域

常用的求和公式

ln(n1)=n=1xnn,1<x1ln(n+1)=n=1(1)n1xnn,1<x1
12ln(n+1)=n=1(1)n1xn2n,1<x1
arctanx=n=1(1)n1x2n+12n+1,1x1
ex=n=1xnn!,<xex=n=1(1)nxnn!,<xex+ex2=n=1x2n(2n)!,<xexex2=n=1x2n+1(2n+1)!,<xcosx=n=1(1)nx2n(2n)!,<xsinx=n=1(1)nx2n+1(2n+1)!,<x
x(1x)2=n=1nxn,1<x<1ln(1x)=n=1xnn,1x<1
ln(n1)=n=1xnn,1<x1ln(n+1)=n=1(1)n1xnn,1<x1
12ln(n+1)=n=1(1)n1xn2n,1<x1
arctanx=n=1(1)n1x2n+12n+1,1x1
ex=n=1xnn!,<xex=n=1(1)nxnn!,<xex+ex2=n=1x2n(2n)!,<xexex2=n=1x2n+1(2n+1)!,<xcosx=n=1(1)nx2n(2n)!,<xsinx=n=1(1)nx2n+1(2n+1)!,<x
x(1x)2=n=1nxn,1<x<1ln(1x)=n=1xnn,1x<1